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An Application of Sliding Horizon Control to an Electro
Hydraulic Automotive Seat Simulator
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The paper demonstrates the tracking performance of a sliding horizon feedback/feedforward

preview optimal control when applied to a hydraulic motion simulator which has been built to
provide a means of replicating the actual ride dynamics of an automobile seat/human system.

The design was developed by solving an ordinary differential equation problem instead of a

Ricatti equation. Simulation results indicate that the proposed technique has good performance

improvement in phase tracking when compared to the classical design methods. It is also found
that the controller can be adjusted more easily for robustness due to more tuning parameters.

Key Words: Sliding Horizon Control, Feedforward, Seat Motion Simulator, Robustness,
Tracking Performance

1. Introduction

Automotive motion simulators require to re

produce the dominant vibration modes of motion
experienced by a rider in the vehicle. Traditional

control designs for simulators are not able in

general to meet the strict requirements for flat
magnitude and phase response over the specified

bandwidth of the simulator. A control technique
described here produces a feedback/feedforward

controller for a simulator that makes it possible to

track a command with fidelity.
The application of the sliding horizon control

approach, which belongs to a class of model

based predictive control techniques, is described

in the paper. The various model based predictive
control algorithms in general differ in the models
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used to represent a process, and the cost functions

to be minimized. Sliding horizon control is based
on a state space representation of the model. It

allows straightforward generalization to

multivariable systems which are of interest in

industrial applications.
In most tracking control problems, the path to

be followed over a finite future length oftime (the
horizon length) is available. A control using

prior knowledge of the path, or command input is
often called preview control (Cho, 1999). Recent

research has been aimed at developing methods

that provide tracking when the desired trajectory
is known only over a finite future interval of time.

Tomizuka and Rosenthal (1979) have

demonstrated that the application of the quadratic
regulator to a system with anticipative inputs can

provide improved performance. Lee, Bien, and

Park (1990) describe the use of an instantaneous

optimal controller that results in one step ahead
tracking design for an aircraft. K won, Byun, and

Noh (1989; 1992) have examined the use of an

optimal receding horizon control design for

tracking and disturbance rejection. However,
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where, Ca is discharge coefficient, WX v is the
open area of the valve orifice, P, is supply

pressure, p is fluid density, and LlP( =H- Pz)
is differential pressure.

The flow equation can be Iinearized by

considering a small perturbation about a working
position as follows.

control design based on a full nonlinear model of

the system is possible but impractical. A practical

controller design for the simulator is possible if

the actuators are treated as independent joint

controllers. If the operation of the simulator is

restricted to the vertical motion, the system can be

treated as three independent actuator systems.

Referring to the scheme of a servo-actuating

system (Fig. 2), the flow equation across the valve

is

Fig. 1 Kinematic representation of the seat
simulator assembly

their design requires the real-time solution of a

Ricatti type equation. The development of a

sliding horizon controller with fixed gains based

on the approximation of the finite time LQR is

first discussed in Patten (Patten et al., 1993;
1994) .

The proposed design is developed by solving a

linear ordinary differential equation problem in

stead of solving a Ricatti equation. Simulation

results indicate the fact that while conventional

designs do provide good tracking of the magni
tude of the command reference, they provide very

poor tracking of the phase characteristics of the

command. The severe phase delay made it impos

sible to accurately produce a real road profile
using the simulator.

2. Model Description

Fig. 2 Scheme of a servo-actuating system

(2)

One type of seat simulator that can replicate

three degree of ride motion has been. examined
(Kuo et aI., 1993; Kuehn et al., 1993; Shen et al.,

1996). The simulator is an parallel kinematic

mechanism restrained by a center post and

powered by three hydraulic actuators which com

bine to provide pitch, roll and heave motion

enabling it to reproduce most of the predominant

movements experienced in an automobile. The
simulator system is expected to be able to track

virtually any reference seat track trajectory using

only partial state feedback. The kinematic repre

sentation of the platform, actuators and re

straining center post is depicted in Fig. 1.

An analytic model of the platform dynamics

has been developed by Kuo (Kuo et al., 1993), A

Where, k q is the flow gain and kc is the flow

-pressure coefficient. Considering the fluid

compressibility and leakage, the flow equation
becomes

. Vt .
QL=CtL1P+ApX+ 4/3L1P (3)

where Ct is the total leakage coefficient, A p is the

effective area of the cylinder, "Vt is the total

volume of the cylinder, and /3 is bulk modulus.
Eqs. (2) and (3) can be rewritten as

. 4/3L1P="Vt [-(Ct+kc)L1P-ApX+kqXv] (4)

Neglecting the valve delay, then

Xv=KJ(uu (5)

where K, IS the gain of the stroke of the valve
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spool Xv over the input current i, and K« is the

gain of the input current i over the input voltage

u.
Substituting Eq. (5) into (4)

LlP=*[ -(Ct+kc).::JP-A~+kqK;Kuu](6)

different working environments. Those

parameters were estimated through experiment

(Yan, 1994).

3. Controller Design

where

where,

(12)

(11)

(10)

the co-state equations,

P+QX+ATP-Qr=O

-X+AX+Bu=O

Minimize /=+ l TI
(eTQe+ uTRu) dt

subject to X=AX +Bu and X(O) =Xo.

where, e= X - r is the difference between states

X and the desired command r, XERn, uERm,

AERnxn, and BERnxm.

The preview length Tf is finite and specified in

the above problem. The penalty matrix Q is as
sumed to be positive semi-definite and R be

positive definite. This guarantees the convexity of

the quadratic functional and the existence of its
lower bound on the interval tE [0, Tf ] , for

sufficiently large Tr. The straightforward

minimization of the quadratic functional prod

uces a set of first order 'necessary conditions and
transversality conditions (Kirk, 1970). The first

order necessary conditions are;

the state equations,

The transversality conditions are

where PERn is the co-state variable vector and

the associated control equations,

The goal is to construct a stable suboptimal

feedback/feedforward control by means of the

closed-form solution of a sliding horizon optimal

controller. A sliding horizon feedback/feed

forward controller was proposed to be a reliable

controller for the hydraulic actuators of the seat
simulator. A quadratic performance measure is

adopted with a finite horizon. Instead of solving

differential Riccati equation, the optimal u is
obtained by the closed-form solution (Yan,

1994) .
Referring to Eq. (9), the control criterion

considered here is:

(7)

o
_J!L _--EL

me

ApLlP= md+ ceX+keX

Defining the states as X1=x, Xz=x, and JG=i,
then the state space representation of the model

which utilized in this work becomes

Most parameters, such as Vt , A p, K; and K;
can be. physically measured. However, some

parameters, such as /3, Cs, and p may vary in the

X=AX+Bu, and y= CX (9)

X=AaX+Bau, y=caX (8)

where, me is mass, Ce and ke are equivalent
damping ratio and stiffness of the actuator system.

If the states are defined as X1=x, X2=X, and

JG=LlP, then the state space representation of the

model becomes:

By the Newton's second law, the resulting force

equation is
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The solution method to the two point boundary
value problem is described next.

(20)Hc=L

In the receding horizon optimal preview con
trol, the control law (Eq. (23» is used for a short
duration h. After the interval h, the initial condi
tion Xo and the previewable trajectory are
updated and a new optimal control u(O) is com
puted over an interval of the same length but
shifted by the interval h.

The instantaneous control can then be rewritten
as the form with gain on the current state and the
anticipated command as:

where the subscripts left and right attached to H-1

represent the left-half and right-half substructure

where the gains KxERmxn and KfERmxn are
respectively defined as

Kx~-R-IBTVzower(H-l) left (25)

Kf~R-IBTVzower(H-l) right VlowerS( Tf) (26)

where HER2nX2n and LER2 n are defined as;

H ~ [ VUPper J,
- VzowerS( T f )

L~[ r~ ]- -VzowerS(Tf»)o [VS(r)]-IN(r)dr

Noting that matrix V is full rank and
orthogonal, and S (Tr) is positive definite. The
matrix H is nonsingular and the constant vector c
can be solved uniquely as

c=H-lL (21)

The closed form solution for Eq. (18) is then

W(t) = VS(t) (H-1L

+I t

[VS (r)] - lN ( r) d r) , tE[O, Tf] (22)

and the combination of Eq. (22) and Eq. (9)
yields the open-loop optimal control as

u(t) =-R-1BTVzowerS(t) (H-1L

+ I t

[VS (r)] - lN ( r) d r) (23)

where VUPperERnx2n and ViowerERnx2n repre

sent the upper-half and lower-half substructures
of the matrix V respectively. The following
transformation is then possible.

(Is)

(13)

(14)

W=VZ

W=MW+N

where VER2nx2n is an invertible modal matrix of

M and ZER2n is the transformation variable.
Substituting Eq. (15) into Eq. (I 4) yields

Z=ilZ+V-1N (16)

where A= V-1MVis a diagonal matrix where the
diagonal elements A;U=I, 2, 3, ... , 2n) are the
unique eigenvalues of the matrix M. Employing
the basic theory of ordinary differential
equations, the general solution of the decoupled
differential system Eq. (16) can be obtained as

Z(t)=S(t) (c-l-I t
[ VS ( r)] - lN ( r) d r) (17)

where cER2n is the integral constant vector, and
S (t) ER2nx2n (the state transition operator)

(Brogan, 1985) is a diagonal and· invertible
matrix whose entries are defined as

Sa(t) =exp(M) where i=l, 2, ..., 2n.

The general solution of Eq. (16) is then

W(t)=VS(t) (c+I t

[VS ( r)] - lN ( r) d r) (I8)

where OERn. Introducing W=[X PY, then the
necessary conditions take the form

The constant vector c can be determined using
the boundary conditions (Eq. (13». Substituting
Eq. (13) into Eq. (18) yields

3.1 A closed-form solution
Assuming that the eigenvalues of matrix Mare

all distinct, the following transformation can be
adopted
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of matrix H-1 respectively.
When simulating the performance of the con

trol, the updated value of the state is obtained
using

X(h) = VUPperS(h) (H-1L

+l h

[ VS(r)]-lN(r) dt) (27)

Recalling the definition of L, Eq. (27) can be
rearranged as

X(h) = VuPPerS(h) (H-1
) leftXo- VupperS(h) .

(H-1
) Tight lIzowerS(Tf ) l Tf

[ VS(r) ]-IN(r) dt)

+ VupPerS (h) l h

[VS (r)] -IN( r) dt) (28)

Observing that the desired trajectory is usually
a set of discrete signals for real control systems, N

can be treated as a series of step functions with
constant value in each sampling interval. The
integral terms in Eq. (28) can then be calculated
as

l:l)VS( r) ]-IN( r) dt

= rill [VS(r)]-ldrN(ih-h)
)<;-1)10

=S;NUh-h) (29)

where,-i=l, 2, "', ns--I, and n, is the total number
of sampling points in tE [0, Tf ] with uniform
sampling interval h.

Defining SIER2nx2n as the integral in the ith

interval and noting that S(t) =eAt
, it takes the

following form:

SI~ rill [VS(r)]-ldr
)(i-!)h

=-A-I[I-e.ih]S(-ih) V-I (30)

The integral term can then be rewritten as

where (SI) Tight is the right-half substructure of
the matrix Si.

Assuming that the sliding step for each horizon
is the same as the sampling interval h, the closed
loop instantaneous control (Eq. (24» can be
rewritten as:

where the subscript k indicates the time point
corresponding to t=kh and (Kf ) iERnxn is

defined as:

(33)

Similarly, Eq. (27) can be rewritten as the
recursive form as:

where AkERnxn, CiERnxm are defined as:

A ...~ VUPperS(h) (H- 1
) left (35)

Ci~ VupPerS(h) [81J- (H-I) Tight

lIzowerS(Tf ) ] is:TightQ (36)

where 8 is a Delta function, and I is a unit matrix.

3.2 Tracking performance analysis
For the seat motion simulator, the most impor

tant feature is its ability to track a prescribed
motion trajectory over specific bandwidth(30Hz)
of operation. Thus, the frequency domain
measure is especially important. Since the
trajectories used for testing are usually random
signals, a flat magnitude response of the closed
loop system is not enough to insure tracking
fidelity. The controller must also provide
essentially a flat phase response over the domain
of desired operation. The closed-loop transfer
function is derived for the purpose of the analysis
of tracking performance. Taking the z
transformation of Eq. (34), it follows that

X (z) = TXlrr(Z) (37)

where the closed-loop transfer function Tx» is
defined as

where n, is the total number of sampling points in
tE[O, T

f
]' .--

Applying the design derived her to the motion
simulator, the tracking performance is shown
with the design parameters. The simulations
tested the sensitivity of the design to changes in
preview length Tf are depicted in Fig. 3 and Fig.
4. The results indicate that an increase in the
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Fig.3 Bode plot (magnitude) with different preview
lengths

LOR

Fig. 6 Closed loop bode plot (magnitude)
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10' Fig. 7 Closed loop bode plot (phase)

Fig.A Bode plot (phase) with different preview
lengths

Fig. 5 Comparison of the simulated time responses
to a sinusoidal command

preview length produces no obvious improvement
for the magnitude tracking. However, an increase
in Tf results in a decrease in phase lag. A com
parison ofthe closed-loop time response to 20 Hz
sinusoidal command is shown in Fig. 5. Figures 6

and 7 depict simulation comparisons ofthe closed
loop Bode plot for the different control strategies.
The results indicate that the sliding horizon feed
back/feedforward preview optimal control design
has good performance improvement in phase
tracking comparing with PID and LQR, but the
performance of the _magnitude tracking is a little
lower than LQR at higher frequencies.

3.3 Robustness analysis
An unavoidable fact in the design is that the

nominal model being considered for control will
differ in behavior from the actual system. It is
because modeling of physical systems for control
design invariably involves a trade-off between
simplicity of the model and its accuracy in
matching the behavior of the actual system.

3.3.1 Robust performance
Performance robustness ensures that the per

formance of the closed-loop system remains
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Fig. 8 A simplified block diagram of the closed
loop system

Due to the fact that

Fig. 9 A block diagram of the closed-loop system
with a model uncertainty

lize a family of systems which exist in an uncer

tainty region around the nominal model.

Assume that there exists an additive model

uncertainty LlGs(z). The actual plant model Gp

(z) can then be replaced by Gp (z) =c.(z) +~
Gs(z). The closed-loop control block diagram

with model uncertainty is shown in Fig. 9.

The transfer function can then be written as:

(42)

(41)

II~1;;(~~ 1~I~Gs(z)11 I+G~Z)K:x I, Eq.

(42) will be satisfied whenever I~Gs(z) II
I +G~Z) K:x I~ I. The maximum size of ac,
(z), I~Gs(z) I"" is obtained by

I~Gs(z)lm I+Gp(z)K:x (43)s:

where X» (z) is a reference. Since the feedback

part }(x is chosen to stabilize the nominal plant,
the denominator I +Gp (z) K:x satisfies the

Nyquist criterion. A sufficient condition for sta

bility of the design is then that the denominator

1+ ~Gs(z)K:x meets the Nyquist criterion,
I +Gp(z) K:x

namely

~c(Z)
Ss(z) ~o(z) 1+H

L
(z) (40)

IHL (z) I or equivalently Is: I must be kept large

in order to obtain small ISs(z) I.

within specified bounds if the true process is

different from the model. For robustness analysis

a simplified block diagram for the proposed

design is assumed as shown in Fig. 8.
Assumig Gp (z) is transfer functions of the true

plant, that is Gp (z) = (zI - A) -IB, and c, (z) is

transfer functions of the nominal plant. The rela

tive change of Llc(z) of the closed-loop transfer

function describing the tracking behavior with

respect to process changes is defined by

Gp(Z)}(f Gp(Z)}(f
~c (z) 1+Gp (z) }(x I+ Gp(z) }(x

Gp(Z)}(f
I +Gp(z)}(x

Gp(z) -Gp(z) I
Gp(z) • 1+Gp(z)}(x

I
=~o(Z)I+HL(Z) (39)

A () Gp (z) - Gp T1- A ( )
where uo z Gp(z) , and ru: =VP Z K:x

is the loop gain with the nominal model. Per

formance robustness can be defined as the sensi
tivity of the performance of the closed-loop sys

tem to process changes. The less sensitivity is, the

larger performance robustness is. The sensitivity

function of the closed-loop transfer function
describing the tracking behavior with respect to

changes in the open-loop transfer function

becomes:

3.3.2 Robust stability
Robust stability is the ability of a closed-loop

system to remain stable in the presence of

modeling errors. It means that the controller

which stabilizes the nominal model would stabi-

The variation of the maximum size of the

model uncertainty, I~Gs(z) I", with the design

parameters can be examined. It is also noted that

robust stability conflicts with the effects on robust

performance. The effects of the design parameters

Tf to robust performance and robust stability are
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4. Conclusion
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